
Vol. 2 No. 2 21IQT QUARTERLY FALL 2010

I Q T Q U A R T E R L Y

Broadly speaking, these questions relate to how
well access control aligns with what we can call
"American-style" governance. On the one hand,
identity and access management systems deploy
maximal rulesets that define precisely what subject
and object interactions are permitted, and that
which is not permitted is forbidden. This requires
that the subjects, objects, and interactions are fully
enumerated and well understood (two things the
software industry is not famous for). Strategies
more aligned with American-style governance
feature minimal rulesets and accountability. This
style of governance leads security in the direction of

REFERENCE MONITOR FOR THE INTERNET OF THINGS
By Gunnar Peterson

The information security landscape is dominated by access control technologies.

Identity and access management standards and products have carved out a niche

in every Fortune 500 Information Security Department. Two questions on IAM tools

challenge information security: Are they effective security mechanisms and are they

cost effective? Or, in keeping with the theme, what futures are available to us and how

should we choose?

accountability strategies that require visibility so as to
enable accountability, rather than maximal rulesets
that define all possible states in an access control
matrix. Even weak security controls can be among
the most costly parts of a system to develop and
deploy. Events show that cost and complexity must be
factored into every decision that technologists make.
Accountability strategies offer concrete benefits in
both areas and, in doing so, offer new possibilities.
However, work is required to build this future.
Those who do not record their history are doomed to
uncertain futures.

Vol. 2 No.222 Identify. Adapt. Deliver.™

I Q T Q U A R T E R L Y

Building Security In vs.
Building Visibility In

"Normally, everything is split up and problems are solved
separately. That makes individual problems easy to solve,
but the connections between the problems become very
complicated, and something simple ends up in a real
mess. If you integrate it in the first place, that turns out
to be the most simple solution. You have to think ahead
and you must always expect the unexpected."
— Jan Benthem, chief architect, Schiphol airport

The idea of software security engineering is to
build software that continues to perform even in
the face of attack. This means that access control
must be enforced, sensitive information must be
kept confidential, and threats and failure modes
must be accounted for. To enable the Build Security
In approach, software development organizations
engage in activities throughout the software lifecycle
from development to deployment to operations. These
activities typically include, but are not limited to:
data classification, architectural risk analysis, design
review, threat modeling, static analysis, identity and
access management, code review, key management,
system hardening, vulnerability scanning, and incident
response. The industry has made tremendous
progress in each of these areas over the last ten
years; problems, however, remain.

Each Build Security In activity domain adds cost
and complexity. We did not see security budgets
evaporate in the Great Recession, but already cost-
sensitive businesses are more focused on cost than
ever. Whether or not businesses eventually gain
from their security investments, the Build Security In
activities add short term cost. This means decisions
will be scrutinized not only as architectural issues,
but decided by the stroke of a pen at budgeting time.
However, cost is not likely to be the main issue facing
Build Security In; since the industry has made progress
in the area, companies do get the benefits of tools,
patterns, and practices on a much wider scale. For
example, static analysis is available from IBM and
HP as a standard offering, not an expensive guru, but
rather a "this is how you build software today" package
from two leading vendors. Even more interestingly,

companies increasingly make decisions on their static
analysis tools not based on scanner findings, but
whether the tools integrate better into the source code
management and bug tracking systems.

When Build Security In tools are commoditized
by major vendors, direct cost is reduced but the
overarching challenge in Build Security In is, and will
remain, complexity. There is no standard or set of
standards that streamlines consistent communication
across all the major activities required by Build
Security In at design time, deployment time, and run
time. More to the point, vastly different organizational
skills (read: people) are required for different
activities. The landscape is improving but will remain
Balkanized. An organization could have an adept threat
modeling team, a competent static analysis team, and
substandard architectural and operational talents.
Variability is to be expected, but what compounds the
issue in Building Security In is the lack of coherent
communication across the domain activities, each
uses its own model and process, which is the last
thing you want if your goal is engineering reliability.

As an alternative to Build Security In, the idea of
Building Visibility In1 enables accountability-based
governance rather than control-based governance,
and does so at far lower cost and complexity. The
credit card industry is the canonical private sector
example of the effectiveness of visibility strategies.
Credit issuing banks regularly mail small plastic cards
worth $3,000-$10,000 and sort out the challenges of
fraud and payment on the back end. The credit card
issuers network is comprised of three main areas of
visibility: first, selecting to whom the cards are mailed;
next, the merchant and merchant terminal; and finally,
the runtime transaction. This has enabled global
deployment, and, crucially, with very few controls built
in. There is a registration process for consumers and
merchants to be sure, but beyond that it is visibility
that governs the system events.

How is this accomplished in information systems?
Again, the credit card industry has led the way. The
PCI DSS standard (itself an example of Building
Accountability In) mandates that companies must
"track and monitor all access to network resources

Vol. 2 No. 2 23IQT QUARTERLY FALL 2010

I Q T Q U A R T E R L Y

and cardholder data." Unlike other standards, PCI
DSS goes to prescribe very specific audit logging
architecture. Given the number of companies
impacted by PCI DSS, the knock on effect of this has
been to create a marketplace for log management
vendors whose systems offer ways to tamperproof,
provide integrity and reporting, and other secure
log management capabilities. The log management
vendors provide real value to the industry because
organizations lack the ability to build these tools on
their own, however, log management is in some sense
the easiest, or at least most concrete, problem to solve.

The core issues that drive the overall effectiveness
of the Build Visibility In strategy are not simply the
sanctity of the console and reporting engine the analyst
consumes on the back end, but rather what sources
and targets are registered by the audit log observer,
what events the audit logger has visibility into, and
what event data is useful to the incident responder.
PCI DSS mandates some portion of each of these,
but these are focused on credit card data. Leaving
audit log management aside, effective audit logging
requires the following technical architecture elements:

A) �The audit loggers place(s) in the stack have
visibility into authoritative sources of the origin
(for example, the user principal and the system
they authenticated to) and initiator of the event (for
example, the browser client application making
request on behalf of user principal and the system
it's bound to), the target of the event (for example,
the web service being called), and the source of the

event (for example, the messages passed over the
network). This sounds trivial, but issues such as
artifact resolution make it problematic.

B) �The audit loggers' event model and what events
it is aware of must be mapped to the application
origins, initiators, targets, and event sources. The
audit loggers' event model implements observers
on the subjects, objects, and event streams that it
monitors. For client side events, this might include
authentication or privilege change events, and for
server-side objects this might include session and
resource access events.

C) �Audit Record Format: The event model must
structure its observations in a consistent way to
enable effective incident response.

The closer the audit log observer is to that which is
being monitoreds the more relevant and contextual
the audit records are likely to be. Network monitoring
is not an answer; networks are too dumb; they lack
context about application logic, rules, policies, identity,
and data. Further, network monitors are in no position
to verify information, meaning they are limited to
reporting unverified partial point in time data streams.

Characteristics of the Thingfrastructure

"The Internet of Things — An Action Plan for Europe"2
report discusses implications of current trends in
Internet of Things (IOT) including mobile, RFID, Near
Field Communication (NFC), 2-D bar codes, wireless
sensor/actuators, Internet Protocol Version 6 (IPv6),

Whether or not businesses
eventually gain from their security
investments, the Build Security In
activities add short term cost. This
means decisions will be scrutinized
not only as architectural issues, but
decided by the stroke of a pen at
budgeting time.

Vol. 2 No.224 Identify. Adapt. Deliver.™

I Q T Q U A R T E R L Y

ultra-wide-band, or 3/4GOT. The report identifies three
major trends:

• �Scale: The number of connected devices is
increasing, while their size is reduced below the
threshold of visibility to the human eye.

• �Mobility: Objects are ever more wirelessly
connected, carried permanently by individuals and
geo-localisable.

• �Heterogeneity and Complexity: IOT will be deployed
in an environment already crowded with
applications that generate a growing number of
challenges in terms of interoperability.

The issue of scale is that with devices getting smaller
all the time and more widely deployed, there is a
concomitant trend towards lower power chips like
RFID that offer limited or no storage capacity. Lower
power systems will not likely offer robust messaging
due to lack of queueing, local storage, and processing;
however, they can be widely deployed due to the
relative cheapness of the devices. So individual
failures may be resolved on the server side, through
voting or other reputational algorithms.

Mobility and geolocation services offer some possible
advantages to audit logging by enriching the audit
record data with a more precise location for a given
audible event. However, for this combination to be
useful, the audit log observer must be tamperproof
and always on.

For most of the past decade, technologists worried
about monoculture and cascade failure, but going
forward the future looks increasingly heterogeneous.
iPhone, Kindle, Blackberry, and Droids are all examples
of products selling in the millions based on proprietary
operating systems, hardwares, and even networks.
Heterogeneity has the advantage of an excellent hedge
against cascade failure, but has the side effect of
overwhelming complexity. Deploying audit loggers to
the four aforementioned devices would be four families
of codebases to simply support the operating system;
that is before the audit logger is integrated into the
rest of the proprietary infrastructure.

Applying Reference Monitors in
IOT Considerations, Issues, and Barriers

"The real trouble with this world of ours is not that it is
an unreasonable world, nor even that it is a reasonable
one. The commonest kind of trouble is that it is nearly
reasonable, but not quite. Life is not an illogicality;
yet it is a trap for logicians. It looks just a little more
mathematical and regular than it is; its exactitude is
obvious, but its inexactitude is hidden; its wildness lies in
wait." — G.K. Chesterton

Chesterton benefits from careful reading; pay attention
to the last sentence. Authentication, authorization,
and cryptography attempt an exact partitioning of
the system into secure and insecure states. The sad
fact is that since security is not achieved, the system
remains insecure. Attackers know and exploit these

Vol. 2 No. 2 25IQT QUARTERLY FALL 2010

I Q T Q U A R T E R L Y

gaps, however, the answer is not "add more precise
partitioning between secure and insecure states," but
rather in applying visibility into how the system is used
in the real world — regardless of state.

Applying audit logging in the IOT, means tackling the
following issues:

A) �Event Ownership: Even in a simple example, there
are likely to be multiple participants in a federated
relationship for a mobile use case. The event
stream owner will vary between the user side, the
network side, and the server side, depending on
what part of the sequence of events the message
is traversing. An application is developed by one
or more firms, then signed for distribution into the
proprietary application distribution center, sent
over a proprietary network, verified and installed
on a proprietary OS on the handset and possibly
interacts with secure local storage, and then it is
finally consumed by the user. Assigning ownership
to each part of the event sequence is necessary to
generate the audible event stream and to be able to
rehydrate events on the back end.

B) �Assurance: Due to the complex relationships and
responsibility, it is difficult to create the end to end
view necessary for hardware, software, and process
assurance activities

C) �Occasionally Connected: Mobile devices and lower
power devices can be relied on to do one thing —
go silent from time to time. This can be the result
of normal events like network or power failure, or
it can be a malicious way to hide activity beacons.
For this reason, local storage and a way to protect
and verify this storage is essential. Message and
transaction counters that can be reconciled later
with the server side message count are one partial
way to do this.

D) �Lack of Logging Standards: Given the amount of
different technologies, lack of standards in the
logging area adds to the challenge of consistent
audit record generation. There are two promising
candidates — CEE and XDAS3,4 — but neither has
been adapted to mobile and IOT use cases.

E) �Quality of Visibility: Due to lower power in mobile
and IOT, the information that is passed to these
system is almost always partial. In the case of
SAML, a normal SAML token is sent by value and
is likely to have information about the assertion
issuer, the certificate authority, the authentication
authority, authorization information, and relevant
attributes and values. This is stark contrast to what
data is generally sent as SAML token by reference
instead of by value. A SAML token by value is often
dozens of lines long filled with information, all
quite obvious and tagged, that is helpful to audit
log observers. On the other hand, a SAML token by
reference is:
<samlp:Artifact>AAQAAMh48/1oXIM+sDo7Dh2qMp1HM

4IF5DaRNmDj6RdUmllwn9jJHyEgIi8=</samlp:Artifact>

This is opaque from an observer standpoint and must
be resolved on the server side. This means that audit
loggers require an asynchronous message system that
can correlate the events after the fact. Complicating
this scenario further is that the client side and server
side audit log observers are quite likely to be running
in different domains operated by different groups.
So the audit logger's view of the system will be
subjective based on where it’s located, what events
it can observe, where it can write those events, and
what actions are necessary to take after the fact to
rehydrate the event messages.

Conclusion

"Elements stored in a mind do not have names and are
not organized into folders; are retrieved not by name
or folder but by contents. (Hear a voice, think of a face:
you've retrieved a memory that contains the voice as
one component.) You can see everything in your memory
from the standpoint of past, present and future. Using
a file cabinet, you classify information when you put
it in; minds classify information when it is taken out.
(Yesterday afternoon at four you stood with Natasha on
Fifth Avenue in the rain – as you might recall when you
are thinking about "Fifth Avenue," "rain," "Natasha,"
or many other things. But you attached no such labels
to the memory when you acquired it. The classification
happened retrospectively.)"
— David Gelernter

Vol. 2 No.226 Identify. Adapt. Deliver.™

I Q T Q U A R T E R L Y

RE F ERE N C ES

1	� Build Visibility In," Richard Bejtlich
http://taosecurity.blogspot.com/2009/08/build-visibility-in.html

2	� "The Internet of Things — An Action Plan for Europe"
http://ec.europa.eu/information_society/policy/rfid/documents/commiot2009.pdf

3	� "A Standardized Common Event Expression for Event Interoperability"
http://cee.mitre.org/

4	� "Distributed Audit Services Project"
http://www.opengroup.org/projects/security/xdas/

Gunnar Peterson is a Managing Principal at Arctec Group. He is focused on distributed systems security for
large mission critical financial, financial exchanges, healthcare, manufacturer, and insurance systems, as well as
emerging startups. Mr. Peterson is an internationally recognized software security expert, frequently published,
an Associate Editor for IEEE Security & Privacy Journal on Building Security In, a contributor to the SEI and DHS
Build Security In portal on software security, leads OWASP Web Services Top Ten project, a Visiting Scientist at
Carnegie Mellon Software Engineering Institute, and an in-demand speaker at security conferences. He maintains
a popular information security blog at http://1raindrop.typepad.com.

Audit logging architecture faces technical challenges,
such as decentralized architecture, occasionally
connected mobile devices, and low powered "things"
like RFID. But the more substantial problem is a
priori knowledge on development, deployment,
and usage. For access control-based architecture,
this combination is a crippling blow because those
architectures rely primarily on being able to partition
the system into secure and insecure states at design
time, and then implement that version of the future
into some digital runtime.

For accountability-based architectures, the lack of
a priori predictive efficacy is a challenge because
event models and audit records require some up front
modeling and assumptions, however, accountability
strategies can still deliver value amidst uncertainty.
Just as in real estate, it’s “Location, Location,
Location.” The security architect may not be able
to partition the system into all possible states, but
it’s quite likely that she will be able to identify the
primary subject and object assets. Then the job ahead
becomes integrating audit loggers to enable visibility
into events and searching those events.

